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Abstract

In educational testing, subscores may be provided based on a portion of the items from a larger

test. One consideration in evaluation of such subscores is their ability to predict a criterion

score. Two limitations on prediction exist. The first, which is well known, is that the coefficient

of determination for linear prediction of the criterion score by the subscore cannot exceed the

reliability coefficient of the subscore. The second limitation is on incremental validity. The

coefficient of determination for linear prediction of the criterion score by both the total score and

the subscore is at least as great as the coefficient of determination for linear prediction of the

criterion score by only the total score. Incremental validity may be measured by the difference

between these two coefficients of determination. This difference is no greater than the reliability

of the residual from linear prediction of the subscore by the total score.
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When subscores based on sections of a larger test are employed to provide more detailed

information about an examinee than is available from a total test score, it is reasonable to ask

to what extent the subscores can provide useful predictions of a criterion score. A more subtle

question is whether the subscore can provide incremental validity given that the total score is

already used to predict the criterion score. In fact, significant limitations exist on validity. These

limitations depend on the reliability of the subscore, the reliability of the total score, and on the

correlation of the true subscore and true total score. The limitations apply to any criterion score.

To examine these limitations, some basic results from classical test theory are provided in

section 1. In section 2, these result are provided to yield the desired limits. Some examples

with operational data are provided in section 3. In section 4, conclusions are reached concerning

practical implications. The notation and arguments used parallel those in Haberman (2008).

1 Results From Classical Test Theory

Let SX be a random variable that represents an observed subscore of an examinee randomly

selected from some population, and let SZ be a random variable that represents the observed total

score for that randomly selected examinee. Let SY = SZ − SX , the observed remainder score, be

the portion of the observed total score not ascribed to the observed subscore. Let SV be a random

variable that represents the observed value of an external criterion score for the examinee. This

report considers linear prediction of SV by SX , linear prediction of SV by SZ , and linear prediction

of SV by both SX and SZ . As in classical test theory (Haberman, 2008; Holland & Hoskens, 2003),

for the randomly selected examinee, consider a randomly selected test form from a collection of

parallel test forms and a randomly selected validity measurement from a corresponding collection

of parallel measurements of the validity criterion under consideration. Assume that selection of

test form and criterion score are independent. Then SX = τX + eX , SY = τY + eY , SZ = τZ + eZ ,

and SV = τV + eV . Here the true subscore τX is the conditional expected value of SX given

the examinee, eX = SX − τX is the measurement error of the subscore, the true total score τz

is the conditional expected value of SZ given the examinee, eZ = SZ − τZ is the measurement

error of the total score, the true remainder score τY is the conditional expected value of SY given

the examinee, eY = SY − τY is the measurement error of the remainder score, the true criterion

score τV is the conditional expected value of SV given the examinee, and eV = SV − τV is the

measurement error of the criterion score. Under the assumption that the observed measurements
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SX , SZ , and SV all have finite and positive variances, the observed subscore SX , the true subscore

τX , the measurement error eX , the true total score τZ , the error of measurement eZ , the observed

remainder score SY , the true remainder score τY , the measurement error eY , the true criterion

score τV , and the corresponding measurement error eV are all random variables with finite means

and variances. The expectations satisfy the constraints that E(SX) = E(τX), E(SZ) = E(τZ),

E(SY ) = E(τY ), E(SV ) = E(τV ), and E(eX) = E(eZ) = E(eY ) = E(eV ) = 0. The errors of

measurement are all uncorrelated with the true scores. The error of measurement eX for the

subscore and the error of measurement eY for the remainder score are uncorrelated, so that the

covariance Cov(eX , eZ) = Cov(eX , eX + eY ) of the measurement errors eX and eY is the variance

σ2(eX) of the error of measurement eX of the subscore (Haberman).

To avoid trivial cases, it is assumed that the variance σ2(τX) of the true subscore τX , the

variance σ2(τY ) of the true remainder score, the variance σ2(τZ) of the true total score τZ , the

variance σ2(τV ) of the true criterion score, the variance σ2(eX) of the measurement error eX , the

variance σ2(eY ) of the remainder score eT , and the variance σ2(eV ) of the measurement error eV

are all positive. The variance σ2(eZ) = σ2(eX) + σ2(eY ) of the measurement error eZ , the variance

σ2(SX) = σ2(τX) + σ2(eX) of the observed subscore SX , the variance σ2(SY ) = σ2(τY ) + σ2(eY )

of the observed remainder score, the variance σ2(SZ) = σ2(τZ) + σ2(eZ) of the observed total

score SZ , and the variance σ2(SV ) = σ2(τV ) + σ2(eV ) of the observed criterion score SV are all

positive (Lord & Novick, 1968, p. 57). Thus the observed subscore SX has reliability coefficient

ρ2(SX , τX) = σ2(τX)/σ2(SX) equal to the square of the correlation ρ(SX , τX) of SX and the true

subscore τX , the observed remainder score SY has reliability coefficient ρ2(SY , τY ) = σ2(τY )/σ(SY )

equal to the square of the correlation ρ(SY , τY ) of SY and the true remainder score τY , the

observed total score SZ has reliability coefficient ρ2(SZ , τZ) = σ2(τZ)/σ2(SZ) equal to the square

of the correlation ρ(SZ , τZ) of SZ , and the true total score τZ , and the observed criterion score

SZ has reliability coefficient ρ2(SV , τV ) = σ2(τV )/σ2(SV ) equal to the square of the correlation

ρ(SV , τV ) of SV and the true criterion score τV . All reliability coefficients are positive and less

than 1 (Lord & Novick, p. 61).
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2 Prediction of the Criterion Score

If ρ(SX , SV ) is the correlation of the observed subscore SX and the observed criterion score

SV and if ρ(τX , τV ) is the correlation of the true subscore τX and the true criterion score τV , then

ρ(SX , SV ) = ρ(τX , τV )ρ(SV , τV )ρ(SX , τX) (1)

(Holland & Hoskens, 2003), so that

|ρ(SX , SV )| ≤ ρ(SV , τV )ρ(SX , τX) (2)

and the coefficient of determination ρ2(SV |SX) = ρ2(SX , SV ) for prediction of SV by SX satisfies

ρ2(SV |SX) ≤ ρ2(SV , τV )ρ2(SX , τX).

The product σ2(SV )ρ2(SV |SX) is the mean-squared error achieved by linear prediction of the

criterion score SV by the observed subscore SX . As is well known, (1) and (2) show that the

ability to predict the validity criterion is constrained by the reliability coefficients of both the

validity criterion and the subscore (Lord & Novick, 1968, p. 72). If the subscore has limited

reliability, then prediction of the validity criterion cannot be very effective. Thus a subscore with

a reliability of 0.25 cannot produce a coefficient of determination greater than 0.25, and the

combination of a subscore with a reliability of 0.25 and a criterion score with a reliability of 0.25

cannot yield a coefficient of determination greater than 0.0625.

The incremental contribution of the observed subscore appears to have been less studied. To

determine this contribution, one first considers linear prediction of the observed subscore SX by

the observed total score SZ . The best linear predictor

LX·Z = E(SX) + βX·Z [SZ − E(SZ)],

where

βY Ẋ =
Cov(SX , SZ)

σ2(SZ)

is the regression coefficient for linear prediction of SX by SZ . The prediction error is then the

residual subscore

SX·Z = SX − LX·Z .

Because the observed residual subscore SX·Z is uncorrelated with the observed total score SZ , the

coefficient of determination ρ2(SV |SZ , SX) for prediction of the observed criterion score SV by
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both the observed subscore SX and the observed total score SZ satisfies

ρ2(SV |SZ , SX) = ρ2(SV |SZ) + ρ2(SV |SX·Z)

(Lord & Novick, 1968, p. 266). A measure of the incremental validity of the subscore SX is the

difference

ρ2(SV |SZ , SZ)− ρ2(SV |SZ) = ρ2(SV |SX·Z)

between the coefficient of determination for prediction of the observed criterion score SV by both

the observed subscore SX and the observed total score SZ and the coefficient of determination for

prediction of the observed criterion score SV by the observed total score SZ .

A bound on the coefficient of determination ρ2(SV |SX·Z) can be obtained by noting that the

residual score SX·Z , which is a linear combination of the observed subscore SX and the observed

total score SZ , has a true residual score

τX·Z = τX − E(SX)− βX·Z [τZ − E(SZ)],

a measurement error

eX·Z = eX − βX·ZeZ ,

and a coefficient of reliability

ρ2(SX·Z , τX·Z) =
σ2(τX·Z)
σ2(SX·Z)

= 1− σ2(eX·Z)
σ2(SX·Z)

.

Thus

ρ2(SV |SX·Z) ≤ ρ2(SV , τV )ρ2(τV , τX·Z)ρ2(SX·Z , τX·Z) ≤ ρ2(SV , τV )ρ2(SX·Z , τX·Z).

The reliability ρ2(SX·Z , τX·Z) is readily determined from sample data (Haberman, 2008). The

variance

σ2(SX·Z) = σ2(SX)[1− ρ2(SX , SZ)]

and the regression coefficient βX·Z are estimated as in standard regression analysis. Classical

reliability estimation methods lead to estimates of the variances of measurement σ2(eX) and

σ2(eY ) = σ2(eZ)− σ2(eX). The decomposition eZ = eX + eY leads to the formula

eX·Z = (1− βX·Z)eX − βX·ZeY .

4



Because the measurement errors eX and eY are uncorrelated, the variance σ2(eX·Z) of the error of

measurement eX·Z satisfies

σ2(eX·Z) = (1− βX·Z)2σ2(eX) + β2
X·Zσ2(eY ).

Thus σ2(eX·Z) is estimated by use of the estimates for βX·Z , σ2(eX), and σ2(eY ). In turn,

the estimate for σ2(eX·Z) and the estimate for σ2(SX·Z) lead to an estimate for the reliability

ρ2(SX·Z , τX·Z).

As is evident from the examples in section 3, in many typical cases, the reliability of the

residual subscore SX·Z is low. The basic issue arises in the typical case in which the the true

subscore SX and the true remainder score τY have a positive correlation ρ(τX , τY ). Because

the observed total score SZ is the sum SX + SY of the observed subscore SX and the observed

remainder score SY ,

Cov(SX , SZ) = Cov(SX , SY ) + σ2(SX),

Cov(SY , SZ) = Cov(SX , SY ) + σ2(SY ),

and

σ2(SZ) = σ2(SX) + σ2(SY ) + 2 Cov(SX , SY ).

Thus

βX·Z =
Cov(SX , SY ) + σ2(SX)

σ2(SX) + σ2(SY ) + 2 Cov(SX , SY )
.

In like manner, if βY ·Z is the regression coefficient for linear prediction of the observed remainder

score SY by the total score SZ , then

βY ·Z =
Cov(SY , SZ)

σ2(SZ)
=

Cov(SX , SY ) + σ2(SY )
σ2(SX) + σ2(SY ) + 2 Cov(SX , SY )

.

As expected from the decomposition SX + SY = SZ , one has

βX·Z + βY ·Z = 1.

Because the true scores τX and τY are uncorrelated with the measurement errors eX and eY and

because the measurement errors eX and eY are uncorrelated,

Cov(SX , SY ) = Cov(τX , τY )
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(Lord & Novick, 1968, p.62). It follows that the observed subscore SX and the observed remainder

score SY are positively correlated if the true subscore τX and true remainder score τY are

positively correlated. In this case of positive correlation, the regression coefficients βX·Z and βY ·Z

are both positive. This result has substantial impact when one considers the behavior of the

variance components σ2(τX·Z) and σ2(eX·Z) that determine the reliability of the residual subscore.

The decompositions τZ = τX + τY and βX|·Z + βY ·Z = 1 imply that the true residual subscore

τX·Z = βY ·Z [τX − E(SX)]− βX·Z [τY − E(SY )],

so that the variance

σ2(τX·Z) = β2
Y ·Zσ2(τX)− 2βY ·ZβX·Zσ(τX)σ(τY )ρ(τX , τY ) + β2

X·Zσ2(τY ).

The correlation assumption implies the inequality

σ2(τX·Z) < β2
Y ·Zσ2(τX) + β2

X·Zσ2(τY ).

The previous formula for σ2(eX·Z) can also be written as

σ2(eX·Z) = β2
Y ·Zσ2(eX) + β2

X·Zσ2(eY ),

and the variance

σ2(SX·Z) = β2
Y ·Zσ2(τX·Z) + β2

X·Zσ2(eX·Z).

The reliability formulas σ2(τX) = σ2(SX)ρ2(SX , τX) and σ2(τY ) = σ2(SY )ρ2(SY , τY ) and the

decompositions σ2(SX) = σ2(τX) + σ2(eX) and σ2(SY ) = σ2(τY ) + σ2(eY ) imply that

σ2(τX·Z) = β2
Y ·Zσ2(SX)ρ2(SX , τX)

+β2
X·Zσ2(SY )ρ2(SY , τY )

−βY ·ZβX·Zσ(SX)σ(SY )ρ(SX , τX)ρ(SY , τY )ρ(τX , τY )

and

σ2(SX·Z) = β2
Y ·Zσ2(SX) + β2

X·Zσ2(SY )

−βY ·ZβX·Zσ(SX)σ(SY )ρ(SX , τX)ρ(SY , τY )ρ(τX , τY ).

Thus the reliability coefficient ρ2(SX·Z , τX·Z) = σ2(τX·Z)/σ2(SX·Z) is less than the weighted

average
β2

Y ·Zσ2(SX)ρ2(SX , τX) + β2
X·Zσ2(SY )ρ2(SY , τY )

β2
Y ·Zσ2(SX) + β2

X·Zσ2(SY )
.
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Obviously the reliability of the residual subscore SX·Z will be low unless the subscore SX or

remainder score SY has high reliability; however, even if SX and SY have high reliability,

the reliability of SX·Z is low if the correlation τ(τX , τY ) is high, for the negative term

−βY ·ZβX·Zσ(SX)σ(SY )ρ(SX , τX)σ(τY )ρ(τX , τY ) then results in a substantial reduction in the

reliability of SX·Z .

Some consideration of limits may help clarify results. For fixed ρ(τX , τY ) < 1, σ2(SX), and

σ2(SY ), let the reliability coefficients ρ2(SX , τX) and ρ2(SY , τY ) both approach 1. Then the

reliability coefficients of both the subscore and total score approach 1, the reliability of the residual

SX·Z approaches 1, the coefficient of determination ρ2(SV |SZ) converges to ρ2(SV , τV )ρ2(τV , τZ),

and ρ2(SV |SZ , SX) converges to

ρ2(SV |τZ , τX) = ρ2(SV , τV ){ρ2(τV , τX) + [1− ρ2(τX , τZ)]ρ2(τV , τX |τZ)},

where ρ(τV , τX |τZ) is the partial correlation of the true scores τX and τV given the true

score τZ . Thus the incremental validity measure ρ2(SV |SX·Z) has a limit no greater than

ρ2(SV , τV )[1 − ρ2(τX , τZ)], so that high correlation of the true total score and the true subscore

limits the incremental validity even when the reliability coefficients are high for both the subscore

and the total score.

3 Examples

To illustrate results, the analysis in this section may be applied to the examples considered

in Haberman (2008). In the first example (Tables 1, 2, and 3), subscores were examined from

an SAT R© I administration from 2002. In these tables, the SAT verbal examination is divided

into the sections Verbal I, Verbal II, and Verbal III, while the SAT math examination is divided

into the sections Math I, Math II, and Math III. Alternatively, the SAT verbal has sections for

critical reading (CR), analogies (A), and sentence completion (SC), while the SAT math has

sections for four-choice math multiple-choice (Math 4c), five-choice multiple choice (Math 5c),

and student-produced math responses (Math S). Note that the SAT I examination of 2002 is

substantially different from the current SAT Reasoning Test
TM

, and reporting of these scores was

confined to reports of raw scores on CR, A, and SC to examinees but not to institutions.

In each subscore in each table, the estimated reliability coefficient is sufficient so that

relatively limited restriction on validity results is imposed. The smallest estimated reliability

7



Table 1
Estimated Reliability Coefficients of Subscores

and Residual Subscores for SAT Verbal

Subscore Subscore reliability Residual subscore reliability
Verbal I 0.84 0.11
Verbal II 0.80 0.02
Verbal III 0.72 0.17
CR 0.84 0.24
A 0.74 0.16
SC 0.78 0.15

Note. CR = critical reading, A = analogies, SC = sentence completion.

Table 2
Estimated Reliability Coefficients of Subscores and Residual Subscores for SAT Math

Subscore Subscore reliability Residual subscore reliability
Math I 0.87 0.08
Math II 0.83 0.10
Math III 0.64 0.08
Math 4c 0.72 0.08
Math 5c 0.89 0.06
Math S 0.73 0.12

Note. Math 4c = four-choice math multiple-choice, Math 5c = five-choice math
multiple-choice, Math S = student-produced math responses.

Table 3
Estimated Reliability Coefficients of Subscores and Residual Subscores for SAT Total

Subscore Subscore reliability Residual subscore reliability
Verbal 0.91 0.72
Math 0.92 0.72
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coefficient is for Math III as a subscore of math. The coefficient of 0.64 for this case just implies

that 0.64 is at least as large as the coefficient of determination for prediction of the criterion

score by the Math III score. On the other hand, far stronger restrictions on incremental validity

are present when subscores of verbal or math are considered. The extreme case is Verbal II,

where the estimated reliability of the residual of 0.02 severely restricts incremental validity. The

coefficient of determination for prediction of the criterion score by the Verbal II and the total

verbal scores cannot by more than 0.02 greater than the coefficient of determination for prediction

of the criterion score by the total verbal score. It is notable that no math subscore offers much

possibility in terms of incremental validity, for the maximum reliability of a residual subscore

is 0.12, a value achieved for Math S, the student-produced responses. Even here, the potential

incremental improvement in prediction of a criterion score is quite limited. The coefficient of

determination from use of the total math score to predict the criterion score cannot be more than

0.12 less than the coefficient of determination from prediction of the criterion score by both the

total math score and the Math S subscore. In practice, further limits can be expected because the

reliability of the criterion score is typically someone less than 1 and the correlation of the true

residual score and the criterion score may well be somewhat less than 1.

The highest possibility among the subscores of the verbal and math tests is the critical

reasoning portion of the verbal test, where the upper bound for incremental validity is 0.24. More

generally, analogies, sentence completion, and Verbal III from the verbal test have higher potential

for incremental validity than any subscores from the math test.

The situation is quite different when verbal and math are considered to be subscores of a

total SAT score. Both subscores have quite high reliability, and the restriction on incremental

validity is of little consequence, for the reliability of the residual subscores is 0.72.

For a second example, consider the Praxis
TM

examination results in Haberman (2008).

Here subscores are present for English language arts (E), mathematics (M), citizenship and

social science (C), and science (S). Results are summarized in Table 4. The subscore reliability

coefficients, all of which are at least 0.68, provide only modest restrictions on the correlation of a

validity criterion with the subscore. The restriction on incremental validity is somewhat less for

English language arts and mathematics than for citizenship and social science and for science,

for the residual subscore reliability coefficients have estimates of 0.25 and 0.29 for science and

for citizenship and social science, respectively, while the corresponding reliability coefficients
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Table 4
Estimated Reliability Coefficients of Subscores

and Residual Subscores for Praxis Data

Subscore Subscore reliability Residual subscore reliability
E 0.73 0.43
M 0.79 0.48
C 0.68 0.29
S 0.69 0.25

Note. C = citizenship and social science, E = English language arts,
M = mathematics, S = science.

for English language arts and mathematics are 0.43 and 0.49, respectively. Thus at least some

possibility for appreciable incremental validity exists for all subscores.

4 Conclusions

In terms of validity, results in this report indicate that subscores have limited potential

value unless they have some level of reliability and unless the true subscores are not very highly

correlated with the true total score. Adequate reliability of the subscore is required for any

possible validity result. The subscore cannot be highly correlated with a criterion score unless the

subscore has a high reliability coefficient.

Even for a subscore with high reliability, potential validity results are limited when the

correlation of the true subscore τX and the true remainder score τY is quite high. This situation

corresponds to a high correlation of the true subscore τX and the true total score τZ = τX + τY .

The limits on validity can have modest impact even if the correlation ρ(τX , τZ) indicates a

strong relationship between the true scores τX and τZ . This situation holds for the SAT math

and verbal scales in Table 3, for the estimated value of ρ(τX , τZ) exceeds 0.9 for these cases

(Haberman, 2008).

In practice, limits on incremental validity should be examined to verify that subscores have

any realistic possibility of usefulness. To be sure, some potential for utility does not ensure actual

usefulness. On the other hand, negligible potential can eliminate any need for further study.
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